

Scan to learn more.

HEALTHCARE FILMS

SUSTAINABLE FORMING FILM

Sustainable Forming Films

Specially engineered formulation designed to be environmentally friendly, while providing excellent formability, toughness, and durability.

- Sustainable
- Excellent draw and distribution
- High Flex Crack Resistance
- Excellent Formability
- Excellent Toughness
- Excellent Clarity
- Forms Easily
- · Exhibits minimal snapback

Green Arrow R

- Eco-friendly, sustainable forming film with excellent draw and distribution characteristics
- Excellent cost-effective alternative to EVA/lonomer/EVA forming films
- Strength and elongation characteristics are improved with this material design

Charter Next Generation supports
converters and brand owners with innovative,
high-quality films that increase your productivity.
Our healthcare films are customized to your
exact specifications to withstand sterility
processes, provide traceability for film safety,
and meet your rigorous end-use requirements.
Our films deliver consistent quality for
maximum reliability.

HCX-393NT Green Arrow R™

	Units	ASTM Test Method	4 mil	6 mil	8 mil
Physical Properties					
Gauge	mil	Nominal*	4	6	8
Yield	in²/lb	As calculated*	7,571	5,047	3,785
Haze	%	D-1003	13	19	26
Gloss (45º)	%	D-2457	60	62	65
Mechanical Properties					
Tensile MD Tensile TD	psi psi	D-882 D-822	10.56 14.40	15.84 21.64	21.12 28.85
Elongation MD Elongation TD	% %	D-882 D-822	664 1,007	996 1,510	1,328 2,014
Secant Modulus MD Secant Modulus TD	psi psi	D-882 D-882	17,569 20,300	17,569 20,300	17,569 20,300
Elmendorf Tear MD Elmendorf Tear TD	g g	D-1922 D-1922	1,163 1,786	1,744 2,679	2,326 3,572
Slow Puncture	g	D-1709	5.90	8.85	11.80
Permeation Properties					
O ₂ TR	1	D-1434	190	126	95
MVTR	2	F-1249	0.48	0.32	0.24
Creation Date			November 2020	November 2020	November 2020

^{1.} cc/100in2/24hr (0% RH, 23°C)

^{2.} g/100in2/24hr (90% RH, 100°F)

[•] Internal Test Method